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Abstract
Confidential computing needs hardware support that stops priv-
ileged software from learning secrets of a guest virtual machine.
AMD offers such hardware support in the form of SEV-SNP to cre-
ate confidential virtual machines, such that hardware encrypts all
the VM memory. Specifically, SEV-SNP uses the XEX encryption
mode with address-dependent tweak values such that the same
plaintext at different memory addresses yields different ciphertexts.

Heracles makes three observations: the hypervisor can move
encrypted guest pages in DRAM using three APIs; when it moves
the guest pages to a new DRAM address, pages are re-encrypted; re-
encryption is deterministic. By re-encrypting guest data at precisely
chosen DRAM locations, we can create a chosen plaintext oracle
allowing us to leak guest memory at block granularity. We build
four primitives that leverage the victim’s access patterns to amplify
Heracles’s impact to not only leak data at block but at byte granu-
larity. In our case studies, we leak kernel memory, crypto keys, and
user passwords, as well as demonstrate web session hijacking.

CCS Concepts
• Security and privacy → Hardware attacks and countermea-
sures.
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1 Introduction
Confidential computing has been adopted in several use-cases, es-
pecially cloud deployments [1, 2, 18, 36]. Departing from Intel SGX
enclave model for sub-process isolation [24], modern deployments
have shifted to a broader abstraction. Recent and upcoming hard-
ware support for trusted execution environments that support con-
fidential computing offer a confidential virtual machine (CVM) as
the boundary of isolation. This is apt for cloud scenarios where
customers can lift-and-shift their workloads from classic VMs to
confidential VMs. Not only does this enforce hardware isolation,
it shields the user workloads and data from a buggy or even a
malicious hypervisor.
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AMD has been offering support for such CVMs in the form of
SEV [8], which has been followed up with subsequent enhance-
ments. AMD SEV, which stands for Secure Encrypted Virtualiza-
tion, initially performed memory encryption for VM memory to
protect it from untrusted privileged software. It was followed by
SEV-ES, which added encryption of guest state to enforce confi-
dentiality [29], hence the suffix ES, which stands for Encrypted
State. The latest iteration, called AMD SEV-SNP, further enforces
integrity by ensuring that the hypervisor cannot tamper with the
page mappings, hence the suffix SNP for Secure Nested Paging [3].

Both SEV-ES and SEV-SNP encrypt the guest, i.e., CVM memory
state, including registers and physical memory page content. This
is also the case for past, contemporary, and future TEEs, namely
Intel SGX [24], Intel TDX [26], and Arm CCA [9], respectively.
AMD departs in one notable way—it allows the hypervisor to read
the encrypted state of the CVM memory. This attacker capability,
combined with the underlying cryptographic scheme (AES-XEX),
has been shown to be vulnerable to ciphertext side-channel leak-
age [31, 34]. In particular, the attacker can observe changes in the
ciphertext, or lack thereof, to infer the CVM’s execution state (e.g.,
control variables). In other words, repeating plaintext that leads to
ciphertext collisions leaks information. Recent works have applied
these insights to neural networks that exhibit execution patterns
that are prone to both model weight and input leakage [59, 60].
Clearly, allowing the hypervisor to read the ciphertext of a vic-
tim’s memory during execution leaks information. However, the
adversary has limited control; the ciphertext changes only when
the memory content changes naturally during execution.

In this paper, we present a new attack called Heracles. Our
observation is rooted in: (a) the hypervisor’s capability to move
the victim CVM pages in DRAM, such that it knows the source
physical address and controls the destination physical address;
(b) this moving of pages results in a re-encryption; (c) the AES-
XEX [43] scheme uses physical addresses for generating tweak
values; (d) the victim CVM takes in hypervisor-controlled data
through several APIs. With our ability to move pages, coupled with
AMD’s tweak scheme, we construct a chosen plaintext oracle: the
attacker can provide several known plaintext values and observe
the resulting ciphertext. To exploit this, we construct a dictionary
of plaintext-ciphertext pairs in the preparation step. During the
attack, we observe the victim’s ciphertext and use the dictionary
to extract the corresponding plaintext. This departs from prior
ciphertext-side channel attacks that focused on passively observing
leakage. Instead, we actively move pages in the memory to trigger
re-encryption strategically, observe the ciphertext, and use the
oracle to correctly guess the plaintext.

Practically, the encryption granularity is 16 bytes, which leads
to a dictionary of size 2128. If we assume a priori knowledge of
the victim data (e.g., ASCII values for passwords), it can reduce
the search space. However, for data that does not adhere to these
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distributions (e.g., cryptographic keys), the worst-case complexity
is high. To this end, our second contribution makes Heracles
practical by avoiding brute-force. We build four primitives that are
based on the victim’s execution that results in: changing data at
a byte granularity, changes to data in-place, either due to unique
or repeated values, and attacker-controlled padding boundaries.
Thus, we start by inspiration from prior works on ciphertext-based
side-channels that target in-place changes to data that has repeated
values, and build three new primitives that are specific toHeracles.
We show that these strategies lead to a significant reduction in the
search space and make Heracles practical.

We analyze the AMD SEV-SNP hypervisor interface and find
three ways the hypervisor can move pages in memory. Next, we
build a chosen plaintext oracle by bringing attacker-controlled
plaintext into victim memory, swapping pages, and comparing
ciphertexts. Lastly, we showcase five victim applications where
we apply the four primitives. Notably, we exploit the rep movsb
construct often used in memory copies and force a byte-by-byte
copy such that we can use Heracles. We recover passwords used
in sudo and bash, cryptographic keys in mbedtls, and cookies from
a web server.

MitigatingHeracles requires disabling at least one of the two hy-
pervisor capabilities: (1) moving pages in DRAM; (2) reading CVM
ciphertext. Although AMD can remove hypervisor access to inter-
faces that move pages, it also hinders the hypervisor from doing
efficient resourcemanagement (e.g., dynamic VM scaling). However,
this only requires a firmware update and can be rolled-out for ex-
isting hardware in deployment, thus addressing (1). For addressing
(2), unfortunately, prior defenses are not effective gainst Hera-
cles [28, 41, 54, 55]. They do not stop the hypervisor from reading
the ciphertext; they only address specific ciphertext side-channel
leakage. On the other hand, revoking the hypervisor’s access to ci-
phertext to directly address (2) can not only stop Heracles but also
all prior ciphertext side-channels on AMD SEV-SNP. In fact, AMD
has announced a feature for 5th Generation AMD EPYC Processors
codenamed Turin with Zen 5, where the hardware can limit visibil-
ity of CVM ciphertext to the hypervisor [7]. We cannot estimate
the performance impact of this feature because we were not able to
enable it on our Zen 5 CPUs, due to a lack of hardware, firmware,
and/or BIOS support. It remains to be seen if the trade-off between
removing hypervisors ability to efficiently manage guest memory is
worth it, or if the performance overheads of the hardware support
are modest.

To summarize our key contributions in Heracles:

• Chosen Plaintext Oracle. We use the hypervisor’s ability to
move CVM memory in DRAM and read ciphertexts to build
a chosen plaintext oracle.

• Primitives. To showcase the practicality of the chosen plain-
text oracle beyond brute force, we devise four primitives
that leverage the victim’s data patterns to reduce the search
space.

• Impact on real applications. We show that Heracles is fea-
sible on real-world applications, such as leaking data from
memory copies, authentication passwords in sudo and bash,
cryptographic keys in mbedtls, and session cookies for a web
server.

Responsible Disclosure. We reported our findings to AMD in
January 2025. AMD acknowledged the vulnerability and asked for
a coordinated disclosure with an embargo date. Additionally, AMD
informed us that they will release a SEV-SNP specification and
firmware update that restricts the ability to move pages. They clari-
fied that this is a feature update, and not a mitigation in response to
our disclosure, that limits Heracles. This feature was made public
in May 2025 (SEV-SNP ABI version 1.58 [7]).
Artifacts. To support open science, our code is public at
https://heracles-attack.github.io/

2 Overview
Isolating virtual machines from the hypervisor has gained traction
in recent years, sparking the term Confidential VMs (CVMs). CVMs
safeguard user data and code against an untrusted hypervisor.
AMD Secure Encrypted Virtualization with Secure Nested
Paging (SEV-SNP). AMD SEV-SNP lets users run entire VMs
within a trusted execution environment. AMD hardware allows the
hypervisor to read the encrypted memory and register state of a
CVM. Furthermore, the hypervisor remains responsible for CVM
scheduling and memory management. For the latter, the hypervisor
can move encrypted CVM memory in DRAM—a highly privileged
operation. Thus, AMD does not allow the hypervisor to perform
this operation itself but asks a privileged co-processor to perform
the memory movement.
Memory Encryption. SEV encrypts guest memory with a unique
per-CVM encryption key to guarantee confidentiality. It employs
AES as the encryption algorithm, offering a key size of either 128
or 256 bits. AES organizes the plaintext into 16-byte blocks and
encrypts each one separately. To strengthen SEV against known
attacks, AMD adopts an encryption mode called XOR-Encrypt-XOR
(XEX). XEX uses tweak values derived from the DRAM address
used in the memory access. Tweak values are XORed (⊕) with the
plaintext (before encryption) and the ciphertext (after encryption).
For decryption, the same applies but in reverse. Tweak values ensure
identical plaintext pairs at different memory locations produce
distinct ciphertexts [43] as shown in Figure 1.

2.1 Ciphertext Attacks
On AMD SEV-SNP, attackers can exploit the availability of cipher-
texts to deduce information about plaintexts. XEX mitigates these
attacks to some extent by encrypting identical plaintexts at different
memory locations into distinct ciphertexts. The XEX encryption
mode prevents the attacker from comparing ciphertexts across
different memory locations. As each physical address results in a
unique tweak value, it produces different ciphertexts even for the
same plaintext data. However, when XEX mode encrypts the same
plaintext value at the same physical address, it generates identical
ciphertext values as shown in Figure 2. Researchers have widely
exploited this lack of encryption freshness. Specifically, prior works
primarily leverage the availability of ciphertext as a side channel
to uncover confidential information [31, 34, 59–61].

Cipherleaks [34], the first ciphertext-based side-channel against
SEV-SNP, targeted the CVMs register state that was constantly
written to the same memory location. The attacker could compile
a dictionary of register values and their matching ciphertexts to

https://heracles-attack.github.io/
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0xAA 0xCA

0xAA 0xBA

Plaintext Ciphertext

Address A:

Address B:

ENC

ENC

Tweak A

Tweak B

Figure 1: SEV-SNPs memory encryption with address-based
tweak values. The same plaintext at different memory lo-
cations encrypts to different ciphertexts. The tweak value
limits the impact of ciphertext-based attacks.

0xAAPlaintext:

Ciphertext:

T0 T1 T2

0xAA

0x1F 0x7A 0x1F 0x7A

0xAA 0xAA0xBB 0xBB

0xB3 0xC7

Figure 2: The same plaintext at the same memory location
but different timestamps encrypts to the same ciphertext. An
attacker monitoring ciphertexts infers that the plaintexts at
T0 and T2 are equal.

exploit the deterministic encryption of the register state. Figure 2
shows how the same value written to the same address at differ-
ent times (T0 and T2) encrypts to the same ciphertext. Shortly
before CVM suspension, the microcode writes the register state
always to the same address. If the attacker interrupts a CVM at
two different timestamps and the register state ciphertexts match,
the attacker infers that the registers contain the same plaintext.
From there, an attacker may extract sensitive data from registers
and compromise various cryptographic implementations. Cipher-
leaks only targets the memory containing the register state. AMD
mitigated the vulnerability by adding freshness to the encryption
of the register state. During every register state write, a random
microcode-derived value is XORed with all registers before the
microcode writes the registers to memory. The added freshness
results in distinct ciphertexts despite encrypting the same plaintext.

Other works exploit the same flaw but focus on general guest
memory content (e.g., variables changing during program execu-
tion) rather than register state [31, 59, 60]. Thus, all prior attacks
exploit repeating plaintext that leads to ciphertext collisions, where
the success depends on the application. Due to its root-cause cou-
pled with the attacker’s limited control, prior SEV-SNP ciphertext-
based attack can only extract repeating values from a CVM.

2.2 Heracles Attack
Heracles leaks non-repeating values, based on three observations.

(1) The hypervisor can move guest pages in memory.
(2) Moving memory causes the memory controller to re-encrypt

the moved memory with XEX ⊕ tweak values corresponding
to the new DRAM address.

(3) XEX tweak values are constant through the CVM lifecycle.

Plaintext Ciphertext

Address A:

Address B:

ENC

ENC

Tweaks

Tweaks

T0

Plaintext Ciphertext

Address A:

Address B:

ENC

ENC

Tweaks

Tweaks

T1

Attacker
swaps pages

0xAA 0xBB

0xAA 0xAA

0xAA 0xAA

0xAA 0xBB

0xCA 0xCA

0xBA 0x90

0xCA 0xF8

0xBA 0x56

Figure 3: T0: Attacker-controlled data resides on Page A and
secret data on Page B. The tweak value differs for Page A
and Page B, resulting in two fully different ciphertexts. T1:
Attacker swaps Page A and Page B. The re-encrypted plain-
texts leak partial information about Page A’s content. The
Attacker infers the first byte of the secret is 0xAA because the
ciphertexts match. This simplified example assumes a block
size of 1 byte, compared to 16 bytes for AES.

Crucially, our first observation allows the attacker to expand its
control beyond prior works. Combining all 3 observations, the
hypervisor can build a chosen plaintext oracle to infer secret non-
repeating CVM data.

Figure 3 shows how the attacker swaps Page A and Page B of the
CVM and learns partial information about the plaintext stored on
these pages. Specifically, the swapping causes the page content to
be re-encrypted with the same key but different tweak values (T1
in Figure 3). By comparing the ciphertexts, the hypervisor infers
that the first plaintext bytes of the swapped pages are identical
since the first byte of the ciphertext is identical after the swap.
However, the fact that Page A and Page B share the same first byte
does not leak any information about the byte content itself to the
hypervisor. Thus, only relying on plaintext values already present
in the CVM leaks information in a limited fashion. Next, we explain
how Heracles uses this observation to amplify the leakage.
Building Chosen Plaintext Oracle. A Chosen Plaintext Oracle
lets an adversary create ciphertexts from chosen plaintexts. In the
Figure 3 example, we can build such an oracle if the attacker controls
Page B’s content. Since we have hypervisor privileges, Heracles
can use various CVM I/O interfaces to inject plaintext data into
the CVM. Now at T1 in Figure 3, when the attacker swaps the
victim page A with the attacker-controlled page B, by observing the
ciphertext, it infers whether the guessed plaintext was identical to
the plaintext on the victim page. If the ciphertexts do not match, the
attacker repeats until the guess is correct. Put together, Heracles
can leak CVM memory content, even if it contains values that are
not already present or not repeated in the CVM.
Challenge in using Chosen Plaintext Oracle (CPO) via Brute-
force. The CPO, producing ciphertext for AES, takes a 16-byte value
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as input and outputs a 16-byte ciphertext. Thus, guessing arbitrary
data with Heracles requires bruteforcing all 16 bytes. Without
any prior knowledge, Heracles would need to exhaustively test
on average 2127 distinct plaintexts through the CPO. 127 or 128 (in
intro)? While a priori knowledge about the plaintext under attack
reduces the search space significantly, keys and other high-entropy
data are random and do not offer a reduction in the search space.
If we know the location of the key, we have to brute-force mul-
tiple 16-byte blocks depending on the key length. Although this
brute-force approach remains theoretically feasible, its practicality
is impossible due to the extensive computational resources required.
Consequently, we introduce this solely as a theoretical primitive
rather than a primitive usable to attack real-world systems. More
importantly, this motivates the need to build better attack strategies
to demonstrate that Heracles is practical.

3 AMD Platform
This section introduces the relevant AMD platform components for
Heracles. We explain the details of AMD’s memory encryption
and how the memory controller selects the correct keys.

3.1 SEV-SNP Memory Encryption
SEV-SNP encrypts all guest memory in DRAM. AMD processors
with SEV-SNP enabled may choose between AES-128 and AES-256
for memory encryption. AES encrypts blocks of 16 bytes individu-
ally. AMD uses XOR-Encrypt-XOR (XEX) as the mode of operation
for the encryption algorithm. XEX does not chain ciphertext blocks,
meaning each 16-byte block may be encrypted and decrypted in-
dividually. Being able to encrypt and decrypt 16-byte blocks in-
dividually has performance advantages but comes at the cost of
losing some security properties e.g., compared to GCM encryption
mode. XEX uses tweak values to mask the plaintext before and
the ciphertext after encryption. The memory controller masks the
plaintext by XORing the tweak value to the plaintext, analogously
for the ciphertext. Each DRAM address has a different tweak value.
Tweak values ensure the same plaintext encrypts to different ci-
phertexts depending on the memory location. SEV-SNP does not
refresh the tweak values, which remain static for the lifecycle of
SEV-SNP guests. This results in the same plaintext being written
as the same ciphertext at the same memory location. The memory
controller automatically decrypts and encrypts data on memory
reads and writes.

3.2 Memory Controller
The memory controllers interface the CPU cores and the physical
DRAM. A trusted co-processor (PSP, detailed in Section 4.1) pro-
grams the encryption keys into the memory controller hardware
using a proprietary management protocol [4]. The PSP assigns a
unique encryption key to each SEV-SNP VM, freshly generated on
CVM creation. SEV-SNP uses the upper physical address bits to
propagate key information through the bus to the memory con-
troller. Figure 4 shows different combinations of the propagation.
Upon receiving a memory request, the memory controller checks
whether the destination address has the C-bit set (usually bit 51).
The C-Bit indicates that the data attached to the memory address
should be encrypted for memory write requests. For read requests,

Memory
Controller

Hypervisor

0x...000...1000

0x9FC713BA

0x1000

0x...800...1000

0x...80F...1000

Memory
Controller

Memory
Controller

no
decryption

decrypt with
KeyID 0

decrypt with
KeyID 0xF

Physical Address DRAM

decrypt

Guest
ASID 0xF 0x...80F...1000 Memory

Controller
decrypt with
KeyID 0xF

decrypt

PSP 0x...80F...1000 Memory
Controller

decrypt with
KeyID 0xF

decrypt

Figure 4: Influence of the physical address on the decryp-
tion/encryption operation of the memory controller

it indicates that the memory controller must decrypt the fetched
data before sending it to the cores. If the C-bit is set, the memory
controller uses the higher bits of the physical address, that repre-
sent the Address Space Identifier (ASID), as an index into the data
structure that stores the encryption keys [4].

Next to the encryption key, the memory controller generates two
tweak values based on the memory address. The first tweak value
is XOR’ed to the plaintext before encryption, and the second is
XOR’ed to the ciphertext after encryption. For decryption, the same
operation applies but in reverse. Wilke et al. reverse-engineered
the tweak values and discovered that it only provide 4 bytes of
entropy [56]. Furthermore, they showed that both the tweak values
used in one encryption are identical. Notably, the key index that
the memory controller uses to select the corresponding key equals
ASID of the SEV-SNP CVM. Thus, ASIDs must be unique to prevent
key collusion. ASID 0 is exclusively reserved for hypervisor usage.
Depending on the system configuration, the memory controllers
may also encrypt ASID 0 or treat it as a special case. The security
of SEV-SNP relies on the fact that the hypervisor cannot demand
the memory controller to decrypt memory with a guest key.

4 Page Moving APIs
Moving encrypted pages in DRAM allows the hypervisor to select
the tweak values used to encrypt the page. We systematically ana-
lyze all publicly available SEV-SNP documents and code to identify
all the interfaces that a hypervisor can use to move encrypted guest
pages in memory. We found two different privileged entities capa-
ble of moving pages, exposing in total three APIs to the untrusted
hypervisor.

4.1 Platform Security Processor
One of the privileged entities is the Platform Security Processor
(PSP). The PSP, also known as the AMD Security Processor (ASP)
or just Security Processor (SP), enforces the security semantics of
SEV-SNP. As the highest privilege component on the platform, the
PSP generates and programs the encryption keys into the mem-
ory controller. It plays a vital role in SEV-SNP initialization and
guest bootstrapping (i.e., ensuring CVM ASIDs are unique). The
PSP captures the initial attestation value of a SEV-SNP CVM during
boot. Besides the guest boot, the PSP also plays an important role
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Figure 5: (a) Initial Memory layout. (b) Memory layout after
PSP has moved encrypted guest data from DRAM address
0x1000 to 0x2000. The DRAM data shows the plaintext that
the CVM sees when reading the memory.

in managing the lifecycle of a SEV-SNP CVM. It exposes interfaces
to the hypervisor and for SEV-SNP guests. The hypervisor uses a
set of MMIO registers to request services from the PSP [7]. Two
of these services move encrypted guest pages in DRAM. The hy-
pervisor is not capable of directly moving pages as it would violate
security guarantees offered by SEV-SNP. To grant the hypervisor
the flexibility to reorganize the memory layout, AMD offers it an
API, wherein the PSP—a higher privileged entity—actually executes
the move operation as shown in Figure 5 (b).

4.1.1 Move API. The function SNP_PAGE_MOVE moves encrypted
guest pages in DRAM. It takes as input a source and a destination
address. The source and destination are subject to a variety of secu-
rity checks. The hypervisor must put these pages in a locked state
called Pre-Guest. The locking ensures that neither the hypervisor
nor the guest can write to the pages. Locking is necessary to pre-
vent concurrent access to the DRAM since the PSP cannot move
an entire page atomically. Figure 3 shows how the hypervisor may
swap the content of two pages using the PSP move API.

Specifically, SNP_PAGE_MOVE takes a guest memory source page
and a hypervisor destination page. Upon request and after passing
all security checks, the PSP copies the content of the source page
to its internal buffer and writes it to the destination page. The PSP
sets the guest ASID to the CVM ID to decrypt the page content. The
same applies when the PSP writes the content to the destination
page. The memory controller automatically selects the correct key
and tweak values for the source and destination pages. If successful,
the PSP marks the destination page as guest memory and the source
page as hypervisor-owned.

The API allows Heracles to encrypt a given page in guest mem-
ory with the tweak value of a hypervisor-chosen destination page.
Moving pages is fully transparent to the guest, meaning the guest
has no architectural way of detecting that the DRAM address of
its data has been changed. This makes it especially interesting for
attacks since the guest cannot detect if pages have been moved or
if the hypervisor moves the pages at the correct time, e.g., when
the guest is not scheduled.

4.1.2 Swap API. The functions SNP_PAGE_SWAP_OUT and SNP_-
PAGE_SWAP_IN allow moving encrypted guest pages to disk and
back to memory. SNP_PAGE_SWAP_OUT takes a guest memory source

Table 1: Attack capability overview of different ciphertext-
based attacks on SEV-SNP. – Attack can leak data pattern;
– Attack cannot leak data pattern; – Attack can leak data

theoretically but not practically.

Primitive Heracles Cipherleaks [34]
Li et al. [31]

Ciphersteal [60] Hypertheft [59]

P0: Bruteforce
P1: Byte-By-Byte
P2: Chosen Boundary
P3: In-Place (repeat)
P4: In-Place (unique)

page and a hypervisor destination page. The guest memory is en-
crypted with a special swap key and written to the hypervisor page.
Simultaneously, the PSP creates a metadata entry on another page
containing the hash value of the memory as well as other security-
relevant information. Importantly, the metadata entry does not
contain the DRAM location of the page. When swapping the page
in with SNP_PAGE_SWAP_IN, the hypervisor may choose whichever
DRAM location it likes as long as the hypervisor is the owner of
that memory region. By combining swap-out with swap-in, we can
move an encrypted guest page within the DRAM and effectively
control the tweak values. It achieves the same effect as SNP_PAGE_-
MOVE but with one more API call.

4.2 DMA Engine
Next to the PSP, AMD EPYC processors include another trusted in-
ternal component capable of moving encrypted guest pages. Public
documentation reveals a powerful internal Direct Memory Access
(DMA) engine named MPDMA [5]. AMD introduced MPDMA to
move large amounts of (encrypted guest) memory between two
different memory backends (i.e., DRAM / CXL memory). Its API is
likely much faster compared to the PSP since one command may
move up to 128 pages at once. Furthermore, unlike the PSP, it takes a
list of up to 128 pages to bemoved. MPDMA supports three different
commands, one to move normal unencrypted memory and another
one to move encrypted memory. The third command is a nop com-
mand and exists solely for testing. MPDMA is a passive component
with respect to guest memory. It may change the physical location
where guest memory resides, but it does not actively change its
value or state. Thus, all MPDMA operations are transparent to the
guest, just like the previously introduced PSP operations. While
AMD documents the MPDMA engine, we cannot use it as AMD
disables it by default, and there is no public documentation on how
to enable it. Checking the status registers from the documentation
shows the registers are either not set or the MPDMA is disabled [5].

5 Heracles Primitive
We expand on the details of Heracles attack summarized in Sec-
tion 2.2. Section 5.1 describes how Heracles builds the Chosen
Plaintext Oracle (CPO). In Section 5.2–5.4, we explain our three
attack strategies to overcome the need for bruteforce. Table 1 com-
pares Heracles attack capabilities against previous ciphertext vul-
nerabilities.
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Figure 6: The Victim Page is the physical page where the CVM data under attack resides. The Guess Pages hold the data the
attacker injects into the CVM. 1. The attacker moves the victim page to a temporary page. 2./3. The attacker swaps the Guess
Pages to the previous DRAM address of the Victim Page and compares the resulting ciphertext with the one from the previously
snapshot and repeats 2./3. until the ciphertexts match.

5.1 Steps in Building CPO
Heracles builds a CPO to break SEV-SNPs’ confidentiality. This
subsection explains the three steps involved in leaking 1 byte of
unknown guest memory. An attacker may repeat the steps to leak
an arbitrary amount of data. It can use the CPO to guess data of up
to the used block length of 16 bytes. Trivially bruteforcing 128 bits
is the first primitive P0 that Heracles introduces. However, using
the CPO to brute force 16 bytes is computationally infeasible. If an
adversary uses a CPO to guess up to 8 bits (1 byte), the number of
CPO queries does not exceed 28 = 256 in the worst case. Compared
to 264 queries for a 64-bit value or 2128 queries for a 16 byte block.
Thus, we consciously limit Heracles’s CPO to guess only up to
1 byte at a time. As we show in the next section, even with this
restriction, we can leak almost all memorymoved in a CVM. Figure 6
gives a high-level overview of the attack.
Finding sensitive data in memory. As a necessity, an adversary
must know where the sensitive data resides in the guest memory.
Nearly all previous SEV attacks have proposed techniques to find
pages of interest [17, 31, 39, 42, 45, 46, 56]. All prior attacks use
second-level address translation (SLAT) page faults to trace the
execution state of a CVM. The hypervisor controls the SLAT page
tables and can set bits such as the Non-Executable and Present
bit. The corresponding guest access causes a page fault, revealing
that the guest is trying to execute code on a page. To fine-tune
the results, techniques may use performance counters [17, 31] or
resort to single-stepping [57]. Heracles uses previous page-fault
and single-stepping techniques to precisely find pages of interest.
Step 1: Getting attacker-controlled plaintext into victimmem-
ory. SEV and SEV-ES attacks inject attacker-controlled data in the
CVM [33, 42, 56]. As with finding pages in memory, prior work has
extensively studied CVM I/O interfaces and the possibility of in-
jecting attacker-controlled plaintext. Heracles uses ICMP packets
to inject data into the CVM. Compared to prior work [39], this has
the advantage that we control a full page (0x1000 bytes) rather than
just a small portion of a buffer. Only controlling a subsection of a
page may work for specialized cases where the page alignment of
the secret data and the subsection align. For the CPO to succeed,
the attack-controlled data must have the exact page offset as the
target data. By controlling a 0x1000 page, an attacker can fill the

entire page with the guessed 16-byte blocks and eliminate the need
to precisely inject data at the correct offset.
Step 2: Swapping Pages. To swap pages, we can use one of the
three APIs introduced in Section 4.We resort to only using the SNP_-
PAGE_MOVE API. To swap the pages efficiently, we need a third page
for temporary storage. Figure 6 visualizes the swapping process in
memory. We snapshot the ciphertext on the page containing the
secrets. Subsequently, we use the SNP API and move the secret
page to another DRAM location. The DRAM location with the
snapshotted ciphertext tweak values is now unoccupied. In the
next step, we copy the guest memory page containing the plaintext
we injected into the free DRAM slot.
Step 3: Comparing Ciphertexts. As a last step, we compare the
ciphertext of the newly moved page with the snapshot. If they
match, we know our guess is correct. Otherwise, we go back to Step
1 and repeat until we are successful. For each round, we need to
invoke SNP_PAGE_MOVE twice. First to move the old page from the
DRAM location associated with the tweak values of interest, and
second to move the page containing the new data to that DRAM
location.

5.2 P1: Byte-By-Byte
Heracles leaks data that changes byte-by-byte, as its most impact-
ful attack primitive. As the name indicates, the data must be moved
or changed in a byte-by-byte manner, and an attacker needs a priori
knowledge about the initial memory content.

Figure 7 shows how a victim copies the data from a source ad-
dress byte-by-byte to the destinationmemory address. An adversary
interrupts the CVM between two subsequent byte copies and exe-
cutes theHeracles attack as described in Section 5.1. The adversary
must ensure to leak the data in consecutive order since the bytes of
previous leaks are needed to construct the oracle plaintext for the
following bytes. Missing individual bytes increases the computa-
tional complexity of guessing the next byte. If the attacker misses
one byte, a subsequent guess must test 28 · 28 = 216 plaintext; for
two missed bytes, the complexity increases to 224, and so on. Leak-
ing the byte at position 4 in Figure 7 efficiently (i.e., only needing
to test 28 plaintexts) requires all previous bytes to be known.
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Figure 7: Byte-By-Byte memory copy from source to destina-
tion. Between individual byte copies, an adversary executes
Heracles to leak the byte marked in red. The green bytes are
known to the attacker.

We observe byte-by-byte changing data in a variety of appli-
cations. Linux memcpy resorts to moving data in a byte-by-byte
pattern. Furthermore, an occurrence of byte-by-byte changing data
includes all kinds of user inputs. A user only inputs one character at
a time, and programs process the user input character-by-character
(e.g., Bash and Sudo). Most notably, user inputs also include pass-
words as they are entered by the user. Contrary to P0, we can
significantly reduce the search space to guess keys copied by mem-
cpy. Instead of brute forcing the entire 16-byte block, we brute
force each 1-byte value individually. Brute forcing the key byte-by-
byte reduces the search space from 2128 to 28 · 16. As we show in
the following sections, guessing 28 · 16 values is computationally
feasible in real-world systems.

5.3 P2: Chosen Boundary
Chosen boundary data is data whose block position is affected by
(malicious) user input or other external state. Depending on the
input, the blockwise offset of the chosen boundary data changes
in memory. An example is a format string taking a string as an
argument. Based on the length of the string argument, all data
following the input will be offset in memory.

1 printf("User %s entered %d\n", user_var , input);

Listing 1: Simple Format String in C

Listing 1 shows an example. The content of user_var offsets every
character following its position in the format string, depending on
the length. An empty string in user_var does not offset the follow-
ing characters, whereas a string of length 5 offsets the following
characters by 5 in memory.

Heracles leaks chosen boundary data if an attacker can induce
changes to the offsets on a byte-by-byte basis. Figure 8 shows an
example of an attacker using a chosen boundary privilege. The at-
tacker controls the padding in front of a secret value. Subsequently,
the attacker increases the length of the padding (e.g., by sending
network requests with more data) and pushes the secret byte-by-
byte in a new block. After each increment of the padding by one
byte, the attacker uses Heracles to leak the secret 1-byte value

Padding 01 02 03 04 00

Block Boundary

00 00 00

Padding 0401 02 03 00 00 00

Padding 0301 02 04 00 00

Padding 0201 03 04 00

Padding 01 02 03 04

XX 00 00 00

Chosen Plaintext
Oracle Input

XX 04 00 00

XX 03 04 00

XX 02 03 04

Figure 8: An adversary controls the length of the padding. By
controlling the length, he can offset the secret value to cross
block boundaries. Offsetting the secret value byte-by-byte
allows Heracles to guess the secret byte-by-byte rather than
guessing 4 bytes at one.

Memory Storing
Variables

00 00 00 00

Oracle Guess 0 Oracle Guess 1

00 00 00 00 00 01 00 00

Key Bits

00 00 00 01 00 00 00 01 00 01 00 01

00 01 00 02 00 00 00 02 00 01 00 02

00 00 00 03 00 00 00 03 00 01 00 03

00 01 0F FF 00 00 0F FF 00 01 0F FF

0

0

1

0

1

branch loop_var

Figure 9: Positioning of Variable branch and loop_var from
Listing 2 in memory. An adversary guesses 0 or 1 for the key
using Heracles’s CPO. The green boxes show a ciphertext
match with the loop variables, which leaks the key.

1 for (int loop_var = 0; loop_var <= 255; loop_var ++){
2 int branch = key_bits[loop_var ];
3 do_square ();
4 if(branch)
5 do_mul ();
6 }

Listing 2: Simplified Square and Multiply Algorithm

newly pushed into the new block. The attacker continues until the
entire secret has been successfully leaked

5.4 P3-P4: In-Place
Some values change in-place (e.g., counter, branch variable). Rather
than being copied from one memory location to another, like byte-
by-byte changing data, the values remain static at one location. We
distinguish between two types of in-place changing data.
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P3: Repeating Values. Repeating values will take the same value
over and over again throughout program execution. This can be a
variable indicating whether a conditional branch should be taken
or not (e.g., branch variable in Listing 2). An adversary may trace
a change in the branch variable by observing the ciphertext if the
variable is the only changing data in an encryption block (16 bytes
for AES). Even without Heracles, an attacker may easily leak
patterns by observing changes in the ciphertext and subsequently
building a dictionary of plaintext-ciphertext pairs [31, 34].
P4: Unique Values. Unique values also change in-place but do not
repeat during program execution (e.g., non-overflowing counters).
Real-world applications may have repeating values grouped with
unique values. A monotonously incrementing counter in a plaintext
block will never have the same value throughout the lifecycle of a
CVM, resulting in distinct ciphertext values. Listing 2 shows a code
example where unique and repeating values are naturally grouped
in the same encryption block. The compiler aligns loop_var and
branch such that they are in the same 16-byte encryption block
(Figure 9 shows a simplified version where the block size is reduced
to 4 bytes). loop_var is incrementing throughout the loop, and thus,
the 16-byte block will never have the same value despite branch
taking the same two values over and over. Despite the ciphertext
never repeating, Heracles is still capable of leaking the secret key.
Figure 9 visualizes how an attacker uses Heracles to bypass the
interleaving of two variables. The attacker must only guess two
variables, of which one is monotonously incrementing and the other
one can either be zero or one. The program increments loop_var
in each loop iteration. Both variables are predictable, and thus, the
plaintext memory block of those two variables is also predictable.
In each loop iteration, only two variations are possible, as depicted
in Figure 9. An attack can use Heracles to leak the branch variable
through loop iterations, effectively leaking the key.

6 Case-Studies
We present 5 novel case studies showing the impact of Heracles.
While the first 4 case studies are exclusive to Heracles, the last
case study showcases how Heracles re-enables previous attacks.

6.1 Memcpy
Heracles leaks data moved by memcpy. We discuss how memcpy
works on modern processors and its use of hardware acceleration.

Legacy memcpy implementations use a combination of 64, 32,
and 8-bit stores to move data. This kind of implementation has two
downsides: it is slow due to non-optimized loads and stores, and
implementing it might be cumbersome—software needs to mimic
the memory copy in a loop, and finding the optimal size may vary
from CPU generation to CPU generation. The rep prefix allows to
repeat an instruction as many times as defined in a register The
rep prefix may only be used with a pre-defined set of instructions
(e.g., movs instructions). Initially, the rep prefix was used to prefix
the movement of 8-byte memory blocks in memcpy (rep movsq).
Not all memcpy’s are 8-byte aligned; thus, it was necessary to add
additional code to copy the unaligned data.

Intel and AMD introduced a microarchitectural optimization
called FSRM to move complexity from the software layer to the
microcode. FSRM allows taking the movsb instruction, prefixing it

mov 1

byte

rep movsb

mov 96

byte

(a)

(b)

CPU Frontend Execution Unitsmov 1

byte

mov 1

byte

CPU Frontend Execution Units

Figure 10: (a) expected rep movsb 𝜇ops breakdown according
to public documentation (b) observed rep movsb breakdown.
Memory is moved in chunks of 96 bytes if size permits.

with rep (rep movsb), and the microcode decides the optimal block
size to move data rather than just copying data in 1-byte chunks.
According to Intel benchmarks, it outperforms SIMD instructions
such as AVX in most memory copy scenarios [25].
rep movsb. Linux uses rep movsb as its memcpy backend if the
CPUID flag FSRM is present. All modern AMD EPYC CPUs we tested
support FSRM, namely Zen 3/4/5. Code can use one rep movsb to
move gigabytes of memory. Despite being fast, it can still block the
core for a relatively long time. The CPU may receive interrupts to
interrupt individually executing instructions or 𝜇ops to circumvent
the long blockage. From the documented 𝜇ops [6], it may seem we
can trivially interrupt rep movsb between individual movsb instruc-
tions and use Heracles to leak the data. However, our experiments
single-stepping rep movsb reveal microcode optimizations. We
either get zero or single steps, but the single step moves 96 bytes
at once. This shows the CPU pipeline recognizes rep movsb and
performs an uninterruptible optimization to move multiple bytes
atomically. Figure 10 (b) shows the simplified flow in the CPU.
Breaking the Optimization. Neither AMD nor Intel document
the microcode optimizations, and public sources such as the LLVM
MCA [35] contain insufficient information regarding rep movsb.
Thus, we do not knowwhat optimizations AMD uses and if they are
reversible. Initially, we tried exhausting the store ports of the CPU
with a co-located hyperthread but were unsuccessful. Ultimately, we
mapped the source and destination memory as uncachable through
the hypervisor-controlled SLAT page tables. The data pages be-
ing uncachable reverts the internal microcode optimization and
results in rep movsb being effectively unrolled into a sequence of
movsb instructions. Figure 10 (a) shows the corresponding result
in the CPU pipeline. We use SEV-Step to single-step single movsb
operations and Heracles to leak the copied data. Note that simply
single-stepping rep movsb is not sufficient to leak any data; we
still need to use the primitive in combination with Heracles.
Impact. Since the Linux kernel uses rep movsb for its memcpy im-
plementation, this allows Heracles to leak data passed to memcpy.
As a second requirement, we need a priori knowledge about the des-
tination memory address to successfully executeHeracles. In most
cases, the requirement is fulfilled as Linux zeros out many buffers
before use. We manually analyzed the kernel and found that the
pre-condition holds for the kTLS and DM-crypt key buffer. Table 2
shows the memory copies of different sizes and whether the desti-
nation buffer is zeroed for all memcpy invocations in Linux. Zeroed
destination buffers can always be leaked by Heracles, whereas
non-zero buffers require a case-by-case analysis of the underlying
function. We can see that most of the larger memory copies have
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Table 2: Linuxkernel memcpy destination buffer contents prior
to the memcpy listed by size.

0 to 8
bytes

8 to 16
bytes

16 to 64
bytes

64 to 128
bytes

128 to 1024
bytes

> 1024
bytes

Zero 145917 66244 55306 13585 1689 24625
Non-Zero 187168 13828 27250 2373 257 5457
Zero-Rate 43.81% 82.73% 66.99% 85.13% 86.79% 81.86%

the destination buffer zeroed and are thus valid targets. Our exper-
iment shows that larger buffers are more likely to have a zeroed
memory compared to small (< 8-byte) buffers.

6.2 Bash
Bash is the default shell on nearly all Linux distributions. Inde-
pendent of the terminal emulator, all characters entered by a user
eventually end up in shell memory for further processing. Our
experiments show bash processes all characters the user enters
unless another application (e.g., sudo, vim) runs in the session. SSH
sessions on the remote server also create a Bash shell in the CVM.
We leak all characters a user types into a CVM Bash shell.

1 if (rl_line_buffer == 0)
2 rl_line_buffer = (char *) xmalloc (256);

Listing 3: Bash input buffer init

Bash allocates a 256-byte buffer at startup using xmalloc (List-
ing 3). The buffer holds all character inputs typed by a user. If the
user presses Enter, the buffer is reset, and the length is set to 0,
but there is no new allocation of memory. This implies the buffer’s
memory location remains static throughout the lifetime of the shell.
Since no memory has been freed before initializing the buffer, all
the memory returned by malloc has an initial static value known to
an attacker. As the user types, the entered characters are appended
to the character buffer allocated at the beginning. No matter how
fast the user types, Bash uses a read syscall with length 1 and
only reads one character at a time. We use Heracles byte-by-byte
changing data primitive to leak all characters a user enters in Bash.

6.3 Sudo
Sudo is used as the default utility to run commands as root on a
majority of Linux distributions. Executing Sudo followed by a com-
mand requires the user to authenticate themselves for the command
to execute as root. There are multiple ways of authentication, but
the most common one is by entering the password. Since Sudo is
running, the user password is not buffered by Bash memory but is
directly written into Sudo’s memory. Like Bash, Sudo processes the
password string character by character in a memory buffer. Sudo
does not use malloc functions to allocate a buffer but resorts to
memory in the BSS section. Sudo zeroes the memory before being
used as a buffer for the password.

1 while (true) {
2 nr = read(fd, &c, 1);
3 if(c == '\n')
4 break;
5 [...]
6 *cp++ = c;
7 }

Listing 4: Sudo Password Reading

Listing 5 shows how Sudo copies the password to the memory
location. Between each character, we use Heracles to leak the
password byte-by-byte. We leak the password effectively since we
know the initial memory values of the buffer.

6.4 Mongoose
Mongoose is a lightweight C/C++ webserver, with the reference
usage requiring just a few lines of code to function. Heracles leaks
the session cookie to effectively hijack the user session. We verify
that during runtime of said reference, the text buffer containing
the HTTP request is located at a static memory address. Modern
web applications often identify sessions using cookies or tokens,
mostly consisting of character encoding data. As a consequence, an
attacker, who can cause web requests to be issued from a context
where the victim is authenticated and therefore has a cookie set,
can cause repeated requests containing this value with a different
length prefix. In combination with the requests of different lengths,
we use Heracles to leak data using the chosen boundary primitive.

A typical setting for this could include the user being signed
in to the victim web application while also accessing a web page
under the control of the attacker. The attacker can then, for example,
use window.location.replace or a similar API to cause repeated
requests, which cause the cookie to be placed in carefully controlled,
shifting locations on the server. Then, with theHeracles primitives,
the attacker can leak and overtake the victims’ session. This attacker
model may seem strong. However, for example, a malicious cloud
provider can be a realistic and sufficient instance of such an attacker
in the real world.

6.5 mbedtls
mbedtls is a C cryptographic library providing a TLS implementa-
tion, as well as access to its building primitives. We observed that
the function responsible for computing the modular exponentiation,
when built out of the box, places two important, exponent-dependent
variables on well-aligned offsets on the stack. Namely, window_-
bits and window are the only variables placed next to each other
in a 16-byte block. A trace of these variables provides enough infor-
mation to fully reconstruct the exponent. We use single-stepping to
obtain such a trace and Heracles to decrypt it. The variable space
is limited by the maximal window size. In the code, this is defined as
6; however, the default value is statically set to 3. Therefore we only
have to test 3 ∗ 23 = 24 values. For many usages of this operation,
the exponent is either the key itself, or at least key-dependent, thus
resulting in a powerful attack against this implementation.

1 do {
2 /* [...] */
3 /* Insert next exponent bit into window */
4 ++ window_bits;
5 window <<= 1;
6 window |= (E[E_limb_index] >> E_bit_index) & 1;
7
8 /* [...] */
9 } while (!( E_bit_index == 0 && E_limb_index == 0));

Listing 5: mbedtls loop with exponent dependent variables
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7 Implementation & Evaluation
We perform our experiments on an EPYC 7313 processor with SEV
firmware version 1.55:21 because SEV-Step [57] was developed
on the same CPU generation. The CPU runs microcode version
0x0a0011d5. We verified the availability and functionality of the
SNP_PAGE_MOVE API on an EPYC 9135 and EPYC 9334 processor
with SEV firmware version 1.55:44 and 1.55:32, respectively. SEV
firmware version 1.55:44 marks the latest version available to our
motherboard at the time of writing. Table 3 contains the software
version we use.

Table 3: Application Version and Commits.

App Branch Commit/Version
Sudo master 627ae4b09c744a7c

Bash master 6794b5478f660256

mbedtls dev c811fb79ad7cd6ad

mongoose Release v7.17
Linux master adc218676eef2557 (v6.12)

Getting Data into the CVM. Heracles uses network packets to
inject attacker-controlled data for the CPO in the kernel. Specifically,
we develop a method to inject page-continuous data using ping
packets. Our method has the advantage that we can fill an entire
page with attacker content. As the hypervisor, we set the MTU to
9000 and send ping packets with the respective payload of up to
8900 bytes. The kernel places the payload in up to three additional
continuous pages. A payload of 8900 bytes exceeds the struct sk_-
buff size, and thus, Linux resorts to so-called fragments to store the
additional data associated with the ping packet. The struct sk_-
buff holds references to the fragments. Importantly, the fragments
are contiguous in virtual kernel memory, which results in also being
contiguous in physical memory for 4KiB chunks.
Leaking 1 byte of data. Leaking 1 byte of random data takes, in
the worst case (256 tries), around 2.5 seconds. One-fifth of the time
is attributed to swapping the pages, which takes 1 millisecond per
swap, accumulating to roughly 500 milliseconds. The remaining
time is attributed to QEMU picking up the ping packet, QEMU
sending the network packet to the virtio queue, QEMU sending
the interrupt to the CVM, the CVM picking up the interrupt, and
ultimately the CVM copying the data from the untrusted hypervisor
buffer into its address space. By finding optimized I/O interfaces,
earlier hookpoints, and integrating QEMUs functionality directly
into the exploit code, it is possible to significantly reduce the time
needed to leak one byte. However, 500 milliseconds poses the lower
limit since swapping pages remains a necessity. The success prob-
ability is 100%. We leave the optimization of the attack for future
work.
Single Stepping rep movsb. We use SEV-Step [57] to single-step
rep movsb. We perform our experiments on the same CPU gen-
eration, namely Zen 3, as SEV-Step. On newer EPYC generations,
we experienced problems with setting up SEV-Step, and porting
SEV-Step to newer generations is beyond the scope of this paper.

SEV-Step reports the highest accuracy with a timer value of 0x33.
We use a higher timer value since we map some of the SEV guest
pages as uncachable in the SLAT page tables. Mapping pages as

Table 4: Stepping precision of rep movsb for different timer
values.

0-Steps
Absolute

1-Steps
Absolute

2-Steps
Absolute

0-Steps
Percentage

1-Steps
Percentage

2-Steps
Percentage

0𝑥53 283751 2449002 203 10.38% 89.61 % 0.007%
0𝑥54 331872 2449384 12 11.93% 88.07% 0.0004%
0𝑥55 197928 2444132 2638 7.48% 92.41% 0.09%
0𝑥56 211342 2432732 8338 7.96% 91.71% 0.314%

uncachable likely causes a higher latency to fetch data, and thus,
needs a higher timer value to reliably single-step. Table 4 shows the
zero, single, and double steps of rep movsb we achieve using a test
memcpy within the guest. We allocate two 0x256000 byte buffers
in the guest Linux kernel, disable interrupts, and subsequently call
memcpy to copy data from the source to the destination.

We do not encounter any triple steps in our experiments, and
only rare occasions of double steps. An attacker needs to brute
force 216 bytes in case of double-steps. While brute forcing two
bytes roughly takes 256 times longer than brute forcing 1 byte,
it is still computationally feasible. It is easy for an adversary to
distinguish between zero and single steps by observing a change
in the ciphertext in the destination memory. The adversary knows
with 100% probability that there has been a single or a double-step if
there has been a change in the ciphertext. By setting the timer value
to 0x54, we decrease the likelihood of double-steps to 0.0004%. Our
experiments do not show much difference between a timer value
0x53 and 0x54 in terms of probability for different step sizes. We
assume that the timer value stabilizes and double steps are caused
by a specific sequence of microarchitectural events.
Interrupting memcpy. Heracles uses techniques from WeSee [45]
and SEV-Step [57] to interrupt memcpy. We achieve single-stepping
the execution of memcpy through SEV-Step. After each character,
the attacker injects a virtio interrupt into the CVM, causing it to
copy attacker-controlled data into its memory. Linux copies and
processes (only for certain applications, e.g., ICMP packets) the data
in an IRQ context. We repeat the process until Heracles succeeds.
Our experiments show that for random data, we need on average
1.3 seconds per byte to leak. Whereas with reduced entropy data,
such as ASCII characters, we can halve the time to 0.7 seconds.
Bash. Bash reads the input character by character. Bash processes
the character on the fly, i.e., for auto-completion, and does not
wait for the full input. This makes it slightly more challenging
to profile since Bash will not only process the password but also
call other functions to parse the input. We use two pages and no
single-stepping to monitor changes in the ciphertext. We fault on
the read syscall page and the userspace page of bash to read the
user input character-by-character. If we encounter a page fault on
the read page or Bash page, we mark the other page as non-present,
resulting in another page fault when it is executed/accessed. On
every page fault of the bash page, we check if there has been a
change in the ciphertext and execute Heracles if that is the case.
Sudo. Unlike rep movsb, Sudo does not require precise single step-
ping. It is sufficient to rely on page faults. Sudo reads the password
character-by-character using the read system call. We have to exe-
cute Heracles right after Sudo reads one character through read.
We profile it by page faulting on the page hosting the while-loop in
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Figure 11: Illustration of how we use Heracles to leak Mon-
goose cookies. By moving the unknown secret backwards in
the 16–byte block block under attack, we ensure that only 1
byte of said block is unknown.

Listing 5 and the read system call function. The buffer containing
the password is zeroed and 0x100 byte aligned by the compiler for
security reasons. Sudo reads the password character-by-character
in the getln function. Sudo allocates the static buffer for the pass-
word within tgetpass function, where it is zeroed on every call
to the function. The compiler injects the code to zero the buffer
indirectly. This is the default behavior for Sudo since it was built
with many mitigations on by default. The buffer size is 0x400 bytes.
Our attack succeeds with 100% probability.
Mongoose. A simple web service, written using the Mongoose
framework [37], only has a single event loop, where received HTTP
requests are parsed and then handed off to a callback specified by
the user. We found that the parsing step always leaves the textual
representation of the HTTP request at the same address. Further-
more, much of the content of this buffer is inherently known due
to the predictable fields in the header. Consequently, by causing
the victim’s web browser to repeatedly make requests containing
the secret shifted by some bytes, we can leak the secret value and,
depending on the implementation, hijack the session. Figure 11
illustrates the attack. On the server side, we use techniques from
prior work to page fault once the webserver has filled the buffer.
The attack proceeds in much the same way as the other case studies,
by using prior knowledge of the content, and at most 256 tries of
brute forcing, to leak the next byte of the secret.
mbedtls. We leak the exponent in mbedtls mbedtls_mpi_core_-
exp_mod function. The function uses the sliding window algorithm
for fast exponentiation. By leaking the window bits, we effectively
reconstruct the exponent. The program parses the exponent bit-by-
bit; therefore, the window variable changes bit-by-bit. Between each
change, the algorithm executes between 34546–50512 instructions,
depending on whether the window is being flushed. By tracing
the accesses to the variable window and window_bits, which make
up one block of ciphertext, we can trace the execution of the pro-
gram. By observing the ciphertexts and usingHeracles to infer the
plaintext values, we successfully recover the used exponent with
100% probability. As the default configuration only ever produces 24
different plaintext combinations and always uses the same tweak,
we can build a dictionary of the corresponding ciphertexts.

8 Discussion
We discuss the trade-offs of Heracles, the root causes, and why
current software mitigations are insufficient. We outline hardware
mitigations to eliminate each of the root causes.

8.1 Speed vs. Generality
Cipherleaks [34] and follow-up work [31] leak keys in 0.5–8.53 sec-
onds. They achieve such speeds because they only need to compare
the ciphertext to one value in their dictionary. Heracles achieves
a similar speed for the case where we use P3 and P4 to leak data.
However, with increased speed comes limitations in the variety
of leakage. While P3 and P4 have a small search space, P1 and P2
must test 128 values on average in each iteration. We trade off
performance in favor of leaking more generic data patterns.

When applied naively, Heracles takes up to 2.5 seconds to leak
one random byte in the worst case. While 80–90% of the time is
attributed to our non-optimized implementation, the remaining
10–20% is attributed to the PSP swapping the pages and cannot be
optimized. Even with 250–500 milliseconds to leak one byte, the
lower bound is up to 256 seconds to leak a 1024-byte buffer. During
this time, the CVM thread stalls and may be unresponsive. This
may seem limiting at first. However, we can split the attack into
two phases: an active ciphertext collection phase, which is as fast
as Cipherleaks [34], and a second active phase where we recover
the plaintext. An attacker can recover the plaintext during the
second active phase while the CVM has no active user connected.
This may be the case if the user disconnects from the CVM or the
cloud provider drops network packets to fake a network problem.
The guest cannot differentiate between a network problem and an
attack, which can make Heracles invisible to the guest.

Further, depending on the leaking primitive, we can significantly
reduce the attack time. First, ASCII only comprises 128 different
characters, and some characters are more likely than others. Thus, if
we leak an ASCII password, we only need 0.4 seconds on average for
each character. To leak a 16-character password in sudo Heracles
only needs 6.5 seconds, which is comparable to prior works needing
10–20 seconds [45, 61].

8.2 Root Cause Analysis
Three different design flaws in SEV-SNP enable Heracles: (1) the
ability of the hypervisor to read ciphertext; (2) the lack of freshness
of the memory encryption; and (3) the hypervisor’s ability to move
pages. While one of them alone does not impact SNP’s security
severely, grouped, they are a considerable threat. Changing one of
the flaws fully stops our proposed attacks and greatly improves
SEV-SNPs’ security. Selected software fixes may apply to stopgap
our case studies introduced in Section 6, but addressing the leakage
patterns in Section 5 requires hardware changes.

8.3 Software-Based Defenses
Current ciphertext side-channel defenses exclusively focus on in-
place changing data (Section 5.4) [28, 41, 54] or userspace [55]. The
insight is to blind the plaintext value such that, despite being the
same plaintext, the ciphertext differs. Simply speaking, they add a
software-defined tweak value to the plaintext. Depending on the
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application, the mitigations cause overhead, and the binary must
be specifically compiled with the mitigations in place.

In principle, adding software tweak values to memory stops
Heracles from leaking memory. Practically, all proposed defenses
exclusively protect userspace applications, but Heracles leaks not
only userspace but also kernel memory. Thus, even if all userspace
applications are hardened, Heracles still leaks userspace data pro-
cessed in the kernel (e.g., keys and file I/O). Applying the proposed
defenses to kernelspace is not straightforward for multiple reasons.
All data structures interfering with hardware cannot use proposed
interleaving defenses as it would break the expected layout (e.g.,
ring buffer queue, DMA engine) or masking, since the value is read
at some point by hardware [28, 41]. Kernelspace must initialize the
defense and manage its memory, but at the same time, the kernel
must be protected by the defense, leading to a bootstrapping prob-
lem. Multiple virtual addresses map to one physical address, making
masking-based defenses error-prone [28]. Lastly, SSE instructions
(needed for 16-byte atomic writes in Zebrafix [41]) are generally
not available at all places in the kernel (e.g., entry/exit paths) and
require invasive changes to those paths. In summary, at the time of
writing, software-based defenses do not mitigate all occurrences
of Heracles attacks in practice, due to their focus on userspace.
Future defenses should be designed to protect the kernelspace.

8.4 Hardware Mitigations
We discuss 3 potential hardware mitigations and their overhead.
Fresh Tweak Values. Heracles relies on XEX tweak values being
static throughout the lifetime of a CVM. Generating a fresh value
on every memory write for every 16-byte block stops Heracles.
However, generating fresh values on every memory write requires
invasive hardware changes. The memory controllers would need to
allocate DRAM to store the random tweak values and must become
capable of generating random values on the fly as memory requests
arrive. Furthermore, writing the tweak values to DRAM would
decrease the memory controller performance by a factor of at least
two, which may not be a tolerable performance-security tradeoff.
Using fresh tweak values is the correct cryptographic mitigation
to stopgap Heracles. It requires invasive changes and results in
performance degradation.
Limiting Move APIs. Without the capability of moving pages,
Heracles cannot circumvent the tweak values and thus cannot
build a CPO. Disabling the hypervisor’s ability to dynamically move
pages through the PSP stops our attack at no direct performance
cost. However, there might be indirect costs since cloud providers
rely on overprovisioning their machines and thus require a way
of swapping out guest memory pages to disk. Furthermore, cloud
providers move pages to defragment their memory and create more
efficient memory regions, which reduces TLB pressure by combin-
ing smaller pages into larger ones. Limiting the move APIs can
be easily deployed without changes to the hardware. AMD an-
nounced this feature with their SEV-SNP ABI specification 1.58 in
May 2025 [7]. However, the specification only limits the PSP API
to move pages; it remains to be seen if the MPDMA engine is also
affected.

Restricting Ciphertext Visibility. Previous ciphertext attacks
were application-specific and fixable by software. In contrast, Her-
acles introduces generic leakage patterns, both in kernel and
userspace, observable to the hypervisor. We recommend restrict-
ing ciphertext access as a mitigation to stop all ciphertext-based
attacks. Starting with Zen 5, the hypervisor may enable an addi-
tional security feature to limit the hypervisor’s visibility of guest
ciphertexts. Enabling it results in all memory read accesses of the
hypervisor being checked by hardware. Previously, only write ac-
cesses were subject to those checks. This mitigation fully stops
Heracles as well as software-based ciphertext attacks in general.
We believe this is the mitigation all cloud providers should deploy.
Most of the deployed SEV-SNP installations do not have hardware
support at the time of writing [7]. The feature is not enabled by
default and may induce high performance overhead [7]. We were
unable to quantify the performance overhead of the ciphertext hid-
ing feature on Zen 5—either silicon or SEV firmware support or
both are missing for this feature. We use the newest SEV firmware
version 1.55:54 to perform our experiments. When setting the
ciphertext hiding bit according to the SEV-SNP documentation [7],
the initialization fails with an INVALID_PLATFORM error code. As
per SEV-SNP specification [7], our firmware version should support
ciphertext hiding. The CPUID flag, on our Zen 5 CPU, indicates
support for ciphertext hiding, yet the SNP initialization fails if we
enable it. Since some features may require the latest socket, we
contacted our motherboard supplier about the lack of feature sup-
port. Our analysis concludes that despite the announced support
for the ciphertext-hiding feature, software/hardware support is still
missing.

For platforms without ciphertext-hiding support, we recommend
limiting the availability of the hypervisor to move pages as a soft-
ware solution, as we summarized above. Disabling the move APIs
limits the flexibility of the hypervisor but mitigates Heracles.

8.5 Applicability to other TEEs
Other TEE platforms, such as Intel TDX [26], Intel SGX [24], and
Arm CCA [9] restrict the availability of ciphertext. TDX, for in-
stance, returns 0x00 if the hypervisor tries to read TD-owned mem-
ory. However, TDX allows physical pages to be relocated with
the TDH.MEM.PAGE.RELOCATE API . According to the specification,
TDX encrypts the same plaintext at different timestamps to the
same ciphertext, since it uses the XTS encryption mode and does
not cycle its IVs [26]. Thus, Heracles may also apply to Intel TDX
if an attacker has the capability of snooping the DRAM bus. The
same applies to SEV-SNP when ciphertext-hiding is enabled.

9 Related Work
We discussed the closely related works in Section 2.1, and Table 1
summarizes the differences in attacker capabilities.
Ciphertext Based Attacks. Cipherleaks [34] exploits the lack of
freshness in the VMSA register page to build a register dictionary
to leak cryptographic keys. Subsequently, Li et al. [31] look at other
memory locations where register data may be temporarily stored
and exploit them similarly to Cipherleaks. Ciphersteal [60] and Hy-
pertheft [59] use a ciphertext side-channel on SEV-SNP to leak DNN
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weights and neural network input data, respectively. Beast [16] in-
troduces a plaintext recovery attack with chosen boundary privilege
against TLS 1.0/ SSL 3.0. Similarly, Bosman et al. [11] use the chosen
boundary privilege in combination with memory deduplication to
leak secrets. Li et al. [32, 33] build an encryption and decryption
oracle on SEV. However, to construct the oracle, the authors use
weaknesses specific to SEV, which are mitigated on SEV-SNP. Her-
acles builds a Chosen Plaintext Oracle by combining the weakness
in XEX-based encryption scheme on AMD SEV-SNP with the hy-
pervisor’s ability to bring in new data into the CVM, move pages
in DRAM, and read ciphertext.
Other Attacks on AMD SEV. Buhren et al. [12] glitch the AMD
Platform Security Processor to leak confidential keys embedded
into the processor. Hetzelt et al. [23] analyze Linux device drivers
for CVMs and reports multiple weaknesses. Cachewarp [61] uses
the INVD instruction to compromise SEV-SNP CVMs. Heckler [46]
and WeSee [45] use the interrupt injection interface of a CVM to
compromise its execution integrity. SEVerity [39] injects arbitrary
code into SEV-ES CVMs. SEVurity [56] introduces new methods
to inject data into an SEV-ES CVM and reverse engineers the XEX
value protection. Heracles also leverages the hypervisor’s ability
to inject new data into the CVM in SEV-SNP and benefits from
the XEX analysis. SEVered [38] extracts data from SEV CVMs by
manipulating second-level address translation tables. CounterSE-
Veillance [17] exploits the availability of performance counters on
SEV-SNP CVMs to leak branch information and division results.
Chiang et al. [13] exploit cache and memory contention side chan-
nels to infer confidential information from the guest. BadRam [15]
uses unauthenticated DRAM memory module sizes to create mem-
ory aliasing on AMD EPYC platforms, breaking SEV-SNP. Google
found multiple vulnerabilities in SEV-SNP as part of a pre-release
security analysis [19]. Some of these works, similar to Heracles,
use the attacker’s ability to observe page faults and/or single-step
the CVM to refine the attack window.
Attacks on Intel-based TEEs. AEPICLeak [10] is a non-side chan-
nel architectural bug to compromise SGX. There are numerous
side-channel [21, 22, 22, 40, 48, 50–52, 58] and interface [14, 30, 44,
47, 49, 53] attacks on SGX. Heckler [46] uses int0x80 interrupts to
compromise a TDX CVMs. TDXDown [27] single steps TDX CVMs
to amplify a cache side-channel. Google reported multiple weak-
nesses in TDX during their pre-production analysis [20]. Neither
SGX nor TDX allow the untrusted privileged software to observe
the victim enclave/CVM ciphertext, rendering Heracles or even
prior ciphertext attacks impossible.

10 Conclusion
We presentHeracles, an attack on AMD SEV-SNP that exploits the
hypervisor’s ability to not only observe ciphertext but also move
XEX-based encrypted pages in DRAM. Based on these capabilities,
we show that the hypervisor can launch bruteforce-based attacks
to leak CVM data. Then we build novel leakage patterns to amplify
the leakage and demonstrate it on 5 case-studies. Heracles serves
as a strong motivation to revoke the hypervisor’s ability to observe
ciphertext on AMD SEV-SNP.
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